From Cellulosic Based Liquid Crystalline Sheared Solutions to 1D and 2D Soft Materials

نویسندگان

  • Maria Helena Godinho
  • Pedro Lúcio Almeida
  • João Luis Figueirinhas
چکیده

Liquid crystalline cellulosic-based solutions described by distinctive properties are at the origin of different kinds of multifunctional materials with unique characteristics. These solutions can form chiral nematic phases at rest, with tuneable photonic behavior, and exhibit a complex behavior associated with the onset of a network of director field defects under shear. Techniques, such as Nuclear Magnetic Resonance (NMR), Rheology coupled with NMR (Rheo-NMR), rheology, optical methods, Magnetic Resonance Imaging (MRI), Wide Angle X-rays Scattering (WAXS), were extensively used to enlighten the liquid crystalline characteristics of these cellulosic solutions. Cellulosic films produced by shear casting and fibers by electrospinning, from these liquid crystalline solutions, have regained wider attention due to recognition of their innovative properties associated to their biocompatibility. Electrospun membranes composed by helical and spiral shape fibers allow the achievement of large surface areas, leading to the improvement of the performance of this kind of systems. The moisture response, light modulated, wettability and the capability of orienting protein and cellulose crystals, opened a wide range of new applications to the shear casted films. Characterization by NMR, X-rays, tensile tests, AFM, and optical methods allowed detailed characterization of those soft cellulosic materials. In this work, special attention will be given to recent developments, including, among others, a moisture driven cellulosic motor and electro-optical devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theoretical modeling for quantum liquids from 1d to 2d dimensional crossover using quantum groups

Recent experimental and theoretical work in strongly correlated electron system necessitates a formulation to deal with 1d to 2d dimensional crossover and raises several interesting questions. A particularly interesting question is what happens to the 1d Luttinger liquid, as we go from 1d to 2d? The issue of dimensional crossover in lower dimensional systems is of great general interest, in par...

متن کامل

Stabilisation of 2D colloidal assemblies by polymerisation of liquid crystalline matrices for photonic applications.

Colloidal crystals in anisotropic matrices are extremely stable and versatile, but disassemble as soon as the anisotropy of the matrix disappears. We present an approach to first custom-assemble colloidal structures and subsequently stabilize them through photo-polymerisation of the liquid crystalline matrix. The resulting 2D colloidal assemblies are stable at high temperatures and can even be ...

متن کامل

Spatiotemporal stress and structure evolution in dynamically sheared polymer-like micellar solutions.

The complex, nonlinear flow behavior of soft materials transcends industrial applications, smart material design and non-equilibrium thermodynamics. A long-standing, fundamental challenge in soft-matter science is establishing a quantitative connection between the deformation field, local microstructure and macroscopic dynamic flow properties i.e., the rheology. Here, a new experimental method ...

متن کامل

Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy

Cellulosic liquid crystalline solutions and suspensions form chiral nematic phases that show a rich variety of optical textures in the liquid crystalline state. These ordered structures may be preserved in solid films prepared by evaporation of solvent or suspending medium. Film formation from aqueous suspensions of cellulose nanocrystals (CNC) was investigated by polarized light microscopy, op...

متن کامل

Sivashinsky equation in a rectangular domain.

The (Michelson) Sivashinsky equation of premixed flames is studied in a rectangular domain in two dimensions. A huge number of two-dimensional (2D) stationary solutions are trivially obtained by the addition of two 1D solutions. With Neumann boundary conditions, it is shown numerically that adding two stable 1D solutions leads to a 2D stable solution. This type of solution is shown to play an i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2014